790 research outputs found

    Statistical fault detection in photovoltaic systems

    Get PDF
    Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array’s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.Peer ReviewedPostprint (author's final draft

    Artificial neural network for solving the inverse kinematic model of a spatial and planar variable curvature continuum robot

    Get PDF
    In this paper, neural networks are presented to solve the inverse kinematic models of continuum robots. Firstly, the forward kinematic models are calculated for variable curvature continuum robots. Then, the forward kinematic models are implemented in the neural networks which present the position of the continuum robot’s end effector. After that, the inverse kinematic models are solved through neural networks without setting up any constraints. In the same context, to validate the utility of the developed neural networks, various types of trajectories are proposed to be followed by continuum robots. It is found that the developed neural networks are powerful tool to deal with the high complexity of the non-linear equations, in particular when it comes to solving the inverse kinematics model of variable curvature continuum robots. To have a closer look at the efficiency of the developed neural network models during the follow up of the proposed trajectories, 3D simulation examples through Matlab have been carried out with different configurations. It is noteworthy to say that the developed models are a needed tool for real time application since it does not depend on the complexity of the continuum robots' inverse kinematic models

    New modeling approach of secondary control layer for autonomous single-phase microgrids

    Get PDF
    In a microgrid (MG) topology, the secondary control is introduced to compensate for the voltage amplitude and frequency deviations, mainly caused by the inherent characteristics of the droop control strategy. This paper proposes an accurate approach to derive small signal models of the frequency and amplitude voltage at the point of common coupling (PCC) of a single-phase MG by analyzing the dynamics of the second-order generalized integrator-based frequency-locked loop (SOGI-FLL). The frequency estimate model is then introduced in the frequency restoration control loop, while the derived model of the amplitude estimate is introduced for the voltage restoration loop. Based on the obtained models, the MG stability analysis and proposed controllers’ parameters tuning are carried out. Also, this study includes the modeling and design of the synchronization control loop that enables a seamless transition from island mode to grid-connected mode operation. Simulation and practical experiments of a hierarchical control scheme, including traditional droop control and the proposed secondary control for two single-phase parallel inverters, are implemented to confirm the effectiveness and the robustness of the proposal under different operating conditions. The obtained results validate the proposed modeling approach to provide the expected transient response and disturbance rejection in the MG

    Search for narrow resonances in dilepton mass spectra in proton-proton collisions at root s=13 TeV and combination with 8 TeV data

    Get PDF
    Peer reviewe

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore